The symplectic vortex equations and invariants of Hamiltonian group actions
نویسندگان
چکیده
In this paper we define invariants of Hamiltonian group actions for central regular values of the moment map. The key hypotheses are that the moment map is proper and that the ambient manifold is symplectically aspherical. The invariants are based on the symplectic vortex equations. Applications include an existence theorem for relative periodic orbits, a computation for circle actions on a complex vector space, and a theorem about the relation between the invariants introduced here and the Seiberg– Witten invariants of a product of a Riemann surface with a two-sphere.
منابع مشابه
Gromov–Witten invariants of symplectic quotients and adiabatic limits
We study pseudoholomorphic curves in symplectic quotients as adiabatic limits of solutions to the symplectic vortex equations. Our main theorem asserts that the genus zero invariants of Hamiltonian group actions defined by these equations are related to the genus zero Gromov–Witten invariants of the symplectic quotient (in the monotone case) via a natural ring homomorphism from the equivariant ...
متن کاملHamiltonian Gromov –
In this paper we introduce invariants of semi-free Hamiltonian actions of S 1 on compact symplectic manifolds (which satisfy some technical conditions related to positivity) using the space of solutions to certain gauge theoretical equations. These equations generalize at the same time the vortex equations and the holomor-phicity equation used in Gromov–Witten theory. In the definition of the i...
متن کاملSymplectic Vortices with Fixed Holonomy at Infinity Eduardo Gonzalez and Chris Woodward
Let Σ be a fixed surface with cylindrical end punctures, G a Lie group and let X denote a monotone symplectic manifold with a Hamiltonian G-action. Using the symplectic vortex equations for X on Σ and restricting the connections to those with prescribed holonomy at infinity, we (partially) define gauged GromovWitten invariants, which are intended to be a Gromov-Witten theory for the quotient X/G.
متن کاملSe p 19 99 J - holomorphic curves , moment maps , and invariants of Hamiltonian group actions
3 Invariants of Hamiltonian group actions 17 3.1 An action functional . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Symplectic reduction . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Hamiltonian perturbations . . . . . . . . . . . . . . . . . . . . 24 3.4 Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Fredholm theory . . . . . . . . . . . . . . . . . . ...
متن کاملJ -holomorphic curves, moment maps, and invariants of Hamiltonian group actions
3 Invariants of Hamiltonian group actions 17 3.1 An action functional . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Symplectic reduction . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Hamiltonian perturbations . . . . . . . . . . . . . . . . . . . . 24 3.4 Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Fredholm theory . . . . . . . . . . . . . . . . . . ...
متن کامل